یافته‌‌های اخیر در زمینه توکسین‌های NetB و TpeL جهت تولید واکسن علیه بیماری انتریت نکروتیک طیور

نوع مقاله : مقاله مروری

نویسندگان

بخش تحقیق و تولید واکسن های بی هوازی، آزمایشگاه تخصصی تحقیقات کلستریدیا، موسسه واکسن و سرم سازی رازی، سازمان ترویج آموزش توسعه کشاورزی، کرج، ایران

چکیده

کلستریدیوم شامل طیف گسترده‌ای از باکتری‌های میله‌ای شکل بی هوازی گرم مثبت و اسپورزا است که دارای 203 گونه بوده و بر اساس چهار توکسین اصلی یوتا (iA)، آلفا (cpa)، بتا (cpb) و اپسیلون، به پنج تایپ (A، B، C، D، E) طبقه‌بندی می‌شود. این باکتری‌ها یکی از مهم‌ترین عوامل بیماری‌زایی در حیوانات هستند. توکسین‌های متنوع این باکتری نقش مهمی در بیماری‌زایی دارند که از جمله جدیدترین آن‌ها می‌توان به NetB و TpeL اشاره نمود. این توکسین‌ها در ایجاد بیماری‌های متنوعی از جمله انتریت نکروتیک نقش دارند. در این مقاله مروری بر مطالعات انجام یافته بر روی کلیات توکسین‌های NetB و TpeL ارائه می‌گردد. همچنین پیشرفت‌های اخیر جهت تولید واکسن‌های نسل جدید را ارائه و تجزیه و تحلیل‌هایی که توسط دانشمندان با استفاده از نرم‌افزارهای بیوانفورماتیک روی توالی‌های tpeL و netB برای تولید پروتئین نوترکیب انجام یافته، مورد بررسی قرار می‌گیرد. در این راستا محققین در آزمایشات مختلف ژن فیوژن را توسط PCR سنتز نموده و پلاسمید نوترکیب را در باکتری E. coli ترانسفورم کرده‌اند. پروتئین فیوژن حاصله توسط نیکل(Ni-NTA) خالص شده و جهت تأیید از تکنیک‌های SDS-PAGE و وسترن‌بلات استفاده گردیده و جهت سنجش ایمنی، آزمایش خنثی‌سازی سرم در خرگوش استفاده شده است. همچنین در مطالعات دیگر موتانت‌هایی با فعالیت سایتوتوکسیک کمتر توسط کیت به صورت site-directed mutagenesis طراحی شده و با توالی‌سازی تأیید شدند. نتایج مطالعات آنان حاکی از آن است که واکسن‌های نسل جدید می‌توانند به عنوان کاندید واکسن علیه انتریت نکروتیک طیور مورد استفاده قرار گیرند. 

کلیدواژه‌ها


عنوان مقاله [English]

Recently acquired for NetB and TpeL toxins for vaccine production to protect against avian necrotic enteritis

نویسندگان [English]

  • L. Abdolmohammadi Khiav
  • R. Pilechian Langroodi
  • A. Paradise
Department of Anaerobic Vaccine Research and Production, Specialized Clostridia Research Laboratory, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
چکیده [English]

Clostridium is a broad genus of rod-shaped, anaerobic, gram-positive and spore-forming bacteria. It has 203 species and is classified into five isotypes (A, B, C, D, and E) based on four major toxins, iota (iA), alpha (cpa), beta (cpb) and epsilon (etx). These bacteria are one of the most important causes of disease in animals. Various toxins of these bacteria play an important role in pathogenesis. Newly discovered toxin such as NetB and TpeL could be mentioned. These toxins are involved in a variety of diseases, including necrotic enteritis. This article presents an overview of studies on NetB and TpeL toxins. Furthermore recent advances had been provided in the production of new generation vaccines. In this article, we demonstrated that the sequences of tpeL and netB were investigated using bioinformatics software for recombinant protein production. Different regions of the gene were selected and evaluated for fusion protein synthesis. The fusion gene was synthesized by PCR and the recombinant plasmid was transformed into E. coli. Then the fusion protein was purified by NI-NTA and used for confirmation by SDS-PAGE and Western blotting. Serum neutralization test was done to evaluate of antibody in rabbits. Mutants with less cytotoxic activity were also designed by site-directed mutagenesis kits and confirmed by sequencing. The results of this study suggested that new-generation vaccines could be used as a candidate vaccine against avian necrotic enteritis.

کلیدواژه‌ها [English]

  • TpeL
  • NetB
  • Clostridium perfringens
  • new-generation vaccines
  • bioinformatics
1- Alvin, J. W. and D. B. Lacy. 2018. Structure Function Studies of Large Clostridial Cytotoxins. pp.135-152. In: Gopalakrishnakone, P. Stiles, B. Alape-Girón, A. Dubreuil, J. D. and M. Mandal (ed.). Microbial Toxins. Springer, Dordrecht.
2 - Amimoto, K., T. Noro, E. Oishi and M. Shimizu. 2007. A novel toxin homologous to large clostridial cytotoxins found in culture supernatant of Clostridium perfringens type C. Microbiology 153: 1198-1206.
3- Carter, G. P., J. K. Cheung, S. Larcombe and D. Lyras. 2014. Regulation of toxin production in the pathogenic clostridia. Molecular microbiology 91(2): 221-231.
4- Chen, J. and B. A. McClane. 2015. Characterization of Clostridium perfringens TpeL toxin gene carriage, production, cytotoxic contributions, and trypsin sensitivity. Infection and immunity 83(6): 2369-2381.
5- Coursodon, C., R. Glock, K. Moore, K. Cooper and J. Songer. 2012. TpeL-producing strains of Clostridium perfringens type A are highly virulent for broiler chicks. Anaerobe 18(1): 117-121.
6- Egerer, M., T. Giesemann, T. Jank, K. J. F. Satchell and K. Aktories. 2007. Auto-catalytic cleavage of Clostridium difficile toxins A and B depends on cysteine protease activity. Journal of Biological Chemistry 282(35): 25314-25321.
7- Freedman, J. C., J. R. Theoret, J. A. Wisniewski, F. A. Uzal, J. I. Rood and B. A. McClane. 2015. Clostridium perfringens type A–E toxin plasmids. Research in microbiology 166(4): 264-279.
8- Genisyuerek, S., P. Papatheodorou, G. Guttenberg, R. Schubert, R. Benz and K. Aktories. 2011. Structural determinants for membrane insertion, pore formation and translocation of Clostridium difficile toxin B. Molecular microbiology 79(6): 1643-1654.
9- Gibert, M., C. Jolivet-Renaud and M. R. Popoff. 1997. Beta2 toxin, a novel toxin produced by Clostridium perfringens. Gene 203(1,5): 65-73.
10- Greco, A., J. G. Ho, S.-J. Lin, M. M. Palcic, M. Rupnik and K. K. Ng. 2006. Carbohydrate recognition by Clostridium difficile toxin A. Nature structural & molecular biology 13(5): 460-461.
11- Hegazy, W. A. H. and M. Hensel. 2012. Salmonella enterica as a vaccine carrier. Future microbiology 7(1): 111-127.
12- Hofmann, F., C. Busch, U. Prepens, I. Just and K. Aktories. 1997. Localization of the glucosyltransferase activity of Clostridium difficile toxin B to the N-terminal part of the holotoxin. Journal of Biological Chemistry 272(17): 11074-11078.
13- Jank, T. and K. Aktories. 2008. Structure and mode of action of clostridial glucosylating toxins: the ABCD model. Trends in microbiology 16(5): 222-229.
14- Kamalirousta, M. and L. R. Pilehchian. 2017. In silico fusion of epsilon and alpha toxin genes of Clostridium perfringens type and Clostridium septicum. Veterinary researches biological products 29: 128-135.
15- Keyburn, A. L., J. D. Boyce, P. Vaz, T. L. Bannam, M. E. Ford, D. Parker, A. Di Rubbo, J. I. Rood and R. J. Moore. 2008. NetB, a new toxin that is associated with avian necrotic enteritis caused by Clostridium perfringens. PLoS pathogens 4(2): 0001-0011.
16- Keyburn, A. L., R. W. Portela, K. Sproat, M. E. Ford, T. L. Bannam, X. Yan, J. I. Rood and R. J. Moore. 2013. Vaccination with recombinant NetB toxin partially protects broiler chickens from necrotic enteritis. Veterinary research 44(1): 1-8.
17- Kulkarni, R., V. Parreira, S. Sharif and J. Prescott. 2006. Clostridium perfringens antigens recognized by broiler chickens immune to necrotic enteritis. Clinical and Vaccine Immunology 13(12): 1358-1362.
18- Kulkarni, R., V. Parreira, S. Sharif and J. Prescott. 2008. Oral immunization of broiler chickens against necrotic enteritis with an attenuated Salmonella vaccine vector expressing Clostridium perfringens antigens. Vaccine 26(33): 4194-4203.
19- Lanckriet, A., L. Timbermont, V. Eeckhaut, F. Haesebrouck, R. Ducatelle and F. Van Immerseel. 2010. Variable protection after vaccination of broiler chickens against necrotic enteritis using supernatants of different Clostridium perfringens strains. Vaccine 28(36): 5920-5923.
20- Lepp, D., B. Roxas, V. R. Parreira, P. R. Marri, E. L. Rosey, J. Gong, J. G. Songer, G. Vedantam and J. F. Prescott. 2010. Identification of novel pathogenicity loci in Clostridium perfringens strains that cause avian necrotic enteritis. PLoS One 5(5): 1-18.
21- Li, J., V. Adams, T. L. Bannam, K. Miyamoto, J. P. Garcia, F. A. Uzal, J. I. Rood and B. A. McClane. 2013. Toxin plasmids of Clostridium perfringens. Microbiology and Molecular Biology Reviews 77(2): 208-233.
22- Li, J., F. A. Uzal and B. A. McClane. 2016. Clostridium perfringens sialidases: potential contributors to intestinal pathogenesis and therapeutic targets. Toxins 8(11): 1-15.
23- MacLennan, J. D. 1962. The histotoxic clostridial infections of man. Bacteriological reviews 26: 177-274.
24- Mamandi, H., B. Golestani Eimani and R. Pilehchian Langroudi. 2019. Cloning of Tpel Gene of Clostridium perfringens in E. coli. Modares Journal of Biotechnology 10(1): 103-107.
25- Moore, R. J. 2016. Necrotic enteritis predisposing factors in broiler chickens. Avian Pathology 45(3): 275-281.
26- Nagahama, M., M. Oda and K. Kobayashi. Section. 2012. Glycosylating Toxin of Clostridium perfringens. pp. 153-172. In: Petrescu. S (ed.).Glycosylation. In Tech. Croatia.
27- Nagahama, M., A. Ohkubo, M. Oda, K. Kobayashi, K. Amimoto, K. Miyamoto and J. Sakurai. 2011. Clostridium perfringens TpeL glycosylates the Rac and Ras subfamily proteins. Infection and immunity 79(2): 905-910.
28- Ohtani, K. and T. Shimizu. 2016. Regulation of toxin production in Clostridium perfringens. Toxins 8(7): 1-14.
29- Papatheodorou, P., C. Zamboglou, S. Genisyuerek, G. Guttenberg and K. Aktories. 2010. Clostridial glucosylating toxins enter cells via clathrin-mediated endocytosis. PloS one 5(5): 1-8.
30- Paredes-Sabja, D., N. Sarker and M. R. Sarker. 2011. Clostridium perfringens tpeL is expressed during sporulation. Microbial pathogenesis 51(5): 384-388.
31- Pauillac, S., J. D'allayer, P. Lenormand, J. C. Rousselle, P. Bouvet and M. R. Popoff. 2013. Characterization of the enzymatic activity of Clostridium perfringens TpeL. Toxicon 75: 136-143.
32- Pilehchian Langroudi, R. 2013. Molecular biology of Clostridium perfringens focusing on epsilon and beta toxin genes. Journal of Veterinary Laboratory Research 5: 5-19.
33- Pilehchian Langroudi, R. 2015. Isolation, specification, molecular biology assessment and vaccine development of Clostridium in Iran: a review. International Journal of Enteric Pathogens 3: 1-7.
34- Rappuoli, R., S. Black and P. H. Lambert. 2011. Vaccine discovery and translation of new vaccine technology. The Lancet 378(9788): 360-368.
35- Robinson, K., L. Chamberlain, M. Lopez, C. Rush, H. Marcotte, R. Le Page and J. Wells. 2004. Mucosal and cellular immune responses elicited by recombinant Lactococcus lactis strains expressing tetanus toxin fragment C. Infection and immunity 72(5): 2753-2761.
36- Rostami, A., F. Goshadrou, R. P. Langroudi, S. Z. Bathaie, A. Riazi, J. Amani and G. Ahmadian. 2016. Design and expression of a chimeric vaccine candidate for avian necrotic enteritis. Protein Engineering, Design and Selection 30(1): 39-45.
37- Savva, C. G., S. P. F. da Costa, M. Bokori-Brown, C. E. Naylor, A. R. Cole, D. S. Moss, R. W. Titball and A. K. Basak. 2013. Molecular architecture and functional analysis of NetB, a pore-forming toxin from Clostridium perfringens. Journal of Biological Chemistry 288(5): 3512-3522.
38- Sayeed, S., J. Li and B. A. McClane. 2010. Characterization of virulence plasmid diversity among Clostridium perfringens type B isolates. Infection and immunity 78(1): 495-504.
39- Schorch, B., S. Song, F. R. van Diemen, H. H. Bock, P. May, J. Herz, T. R. Brummelkamp, P. Papatheodorou and K. Aktories. 2014. LRP1 is a receptor for Clostridium perfringens TpeL toxin indicating a two-receptor model of clostridial glycosylating toxins. Proceedings of the National Academy of Sciences 111(17): 6431-6436.
40- Shimizu, T., K. Ohtani, H. Hirakawa, K. Ohshima, A. Yamashita, T. Shiba, N. Ogasawara, M. Hattori, S. Kuhara and H. Hayashi. 2002. Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proceedings of the National Academy of Sciences 99(2): 996-1001.
41- Stevens, D. L., M. J. Aldape and A. E. Bryant. 2012. Life-threatening clostridial infections. Anaerobe 18(2): 254-259.
42- To, H., T. Suzuki, F. Kawahara, K. Uetsuka, S. Nagai and T. Nunoya. 2016. Experimental induction of necrotic enteritis in chickens by a netB-positive Japanese isolate of Clostridium perfringens. Journal of Veterinary Medical Science 79(2): 350-358.
43- Tolooe, A., M. Ranjbar, Y. Tamadon and S. Seyedmousavi. 2014. Immunoinformatic Analysis of Alpha and TpeL Toxin of Clostridium perfringens. The 12th Biennial Congress of the Anaerobe Society of the Americas and The 37th Congress of the Society for Microbial Ecology and Disease. Chicago, USA. pp. 171.
44- Uzal, F. A. and J. G. Songer. 2008. Diagnosis of Clostridium perfringens intestinal infections in sheep and goats. Journal of Veterinary Diagnostic Investigation 20(3): 253-265.
45-Wang, H., X. Ni, X. Qing, L. Liu, J. Lai, A. Khalique, G. Li, K. Pan, B. Jing and D. Zeng. 2017. Probiotic enhanced intestinal immunity in broilers against subclinical necrotic enteritis. Frontiers in immunology 8: 1-14.
46- Wilde, S., Y. Jiang, A. M. Tafoya, J. Horsman, M. Yousif, L. A. Vazquez and K. L. Roland. 2019. Salmonella-vectored vaccine delivering three Clostridium perfringens antigens protects poultry against necrotic enteritis. PloS one 14(2): 1-18.
47- Yan, X.-X., C. J. Porter, S. P. Hardy, D. Steer, A. I. Smith, N. S. Quinsey, V. Hughes, J. K. Cheung, A. L. Keyburn and M. Kaldhusdal. 2013. Structural and functional analysis of the pore-forming toxin NetB from Clostridium perfringens. MBIO 4(1): 1-9.
48- Zahoor, I., A. Ghayas and A. Basheer. 2018. Genetics and genomics of susceptibility and immune response to necrotic enteritis in chicken: a review. Molecular biology reports 45(1): 31-37.
49- Zaragoza, N. E., C. A. Orellana, G. A. Moonen, G. Moutafis and E. Marcellin. 2019. Vaccine production to protect animals against pathogenic clostridia. Toxins 11(9): 525.
50- Zekarias, B., H. Mo and R. Curtiss. 2008. Recombinant attenuated Salmonella enterica serovar typhimurium expressing the carboxy-terminal domain of alpha toxin from Clostridium perfringens induces protective responses against necrotic enteritis in chickens. Clinical and Vaccine Immunology 15(5): 805-816.