اثر رنگ کریستال ویولت بر تخمیر شکمبه‌ای در شرایط in vitro

نوع مقاله: مقاله کامل

نویسندگان

1 استادیار گروه علوم دامی مجتمع آموزش عالی تربت‌جام

2 مربی گروه مهندسی بهداشت محیط دانشکده علوم پزشکی تربت‌جام

3 استاد گروه علوم دامی دانشکده کشاورزی دانشگاه فردوسی مشهد

چکیده

کریستال ویولت از جمله آلاینده‌های آبی محسوب می‌شود، بنابراین پژوهشی با هدف بررسی اثر افزودن رنگ کریستال ویولت (صفر، 3، 6 و 9 پی‌پی‌ام) با سطوح مختلف بنتونیت سدیم یا خاکستر پوست خربزه (صفر، 4 و 8 میلی‌گرم به‌عنوان جاذب) به محیط کشت تهیه شده از مایع شکمبه گوسفند در قالب طرح فاکتوریل 3×2×4 انجام شد. کارآیی هر یک از جاذب‌های فوق (صفر، 4 و 8 میلی‌گرم) در حذف کریستال ویولت اضافه شده به آب (صفر، 3، 6 و 9 پی‌پی‌ام) در زمان‌های 3 و 24 ساعت انکوباسیون، نیز ارزیابی شد. هر دو جاذب فوق (به‌ویژه بنتونیت سدیم) منجر به حذف کارآمد رنگ از آب شدند. افزودن رنگ تا سطح 6 پی‌پی‌ام به محیط کشت، باعث کاهش معنی‌دار تولید تجمعی گاز در زمان‌های 12 و 24 ساعت انکوباسیون، پتانسیل تولید گاز، میزان کل اسیدهای چرب فرار، نیتروژن آمونیاکی و نیز کلیه پارامترهای تخمیری برآورده شده از تولید گاز شامل تولید پروتئین میکروبی، قابلیت هضم ماده آلی، انرژی خالص شیردهی و انرژی قابل متابولیسم در مقایسه با تیمار شاهد شد (0001/0>P). مقدار pH محیط کشت تحت تأثیر تیمارهای آزمایشی قرار نگرفت. با افزودن هر یک از جاذب‌ها (به‌ویژه سطح 4 درصد)، کلیه پارامترهای تولید گاز و فراسنجه‌های برآورد شده از تولید گاز، کاهش معنی‌داری را نشان دادند (0001/0>P). نتایج کلی نشان داد کاربرد کریستال ویولت حتی در سطوح پایین، اثر منفی بر فعالیت‌های تخمیری میکروارگانیسم‌های محیط کشت دارد. اگرچه که هر دو جاذب‌ منجر به حذف کارآمد رنگ از آب شدند، ولی نتوانستند از اثرات منفی آن بر محیط کشت بکاهند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of crystal violet dye on rumen fermentation in vitro

نویسندگان [English]

  • M. Kazemi 1
  • E. Ibrahimi Khoram Abadi 1
  • Ameneh Eskandary Torbaghan 2
  • Reza Valizadeh 3
1 Assistant professor, Department of Animal Science, Higher Education Complex of Torbat-e Jam, Torbat-e Jam, Iran.
2 Professional engineering, Department of Environmental Health Engineering, Torbat-e Jam Faculty of Medical Sciences.
3 Professor, Department of Animal science, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
چکیده [English]

Crystal Violet is considered as a source of water pollution, therefore, An experiment was carried out to determine the effect of adding crystal violet (0, 3, 6, and 9 ppm) with different levels of sodium bentonite or melon peel ash (0, 4, and 8 mg as adsorbent) to a culture medium prepared from rumen fluid of sheep in a 4×2×3 factorial design. The effect of two adsorbents (0, 4, and 8 mg) on the removal of the violet crystal added to water (0, 3, 6, and 9 ppm) at 3 and 24 h incubation was also evaluated. The effective removal of dye was observed for above adsorbents (especially sodium bentonite). The gas production at 12 and 24 h, potential gas production as well as TVFA, NH3-N and all the fermentation parameters estimated from gas production including microbial protein yield, organic matter digestibility, net energy for lactation (NEl) and metabolism energy (ME) was decreased compared to control when the dye was added to media at 6 ppm (p<0.0001). The culture medium pH was not affected by the experimental treatments. By adding adsorbents (especially at 4%), most of gas production parameters and estimated parameters from gas production showed a significant decrease (p<0.0001). The overall results showed that the use of crystal violet even at low levels has a negative effect on fermentation activities of microorganisms in the media. Although two adsorbents led to a dye significant decrease in water, however they could not reduce the negative effects of dye in the media.

کلیدواژه‌ها [English]

  • Crystal Violet
  • dye
  • Water pollutant
  • Media
  • Adsorbent

1. Aghashahi, A. R., A. Nikkhah, S. A. Mirhadi, M. Zahedifar and H. Mansouri. 2006. Effect of different level of unprocessed bentonite, processed bentonite, and clinoptilolite of different rumen degradable protein level, on ammonia concentration, soluble and digestible protein (In-vitro). Pajouhesh and sazandegi 70: 80-90. (In Farsi).
2. Ali, H. 2010. Biodegradation of Synthetic Dyes-A Review. Water Air Soil Pollution 213: 251-273.
3. Aljeboree, A. M. 2016. Adsorption of crystal violet dye by fugas sawdust from aqueous solution. International Journal of ChemTech Research 9: 412-423.
4. Amoei, A., H. A. Asgharnia, K. Karimian, Y. Mahdavi, D. Balarak and S. M. Ghasemi. 2014. Efficiency of response surface methodology for optimizing removal of crystal violet (CV) from aqueous solutions by modified barley sraw. Journal of Environmental Health Engineering 2: 65-75.
5. Bach, A., S. Calsamiglia and M. D. Stern. 2005. Nitrogen Metabolism in the Rumen. Journal of Dairy Science 88: (E. Suppl.): E9-E21.
6. Barnett, A. J. G., and R. Reid. 1957. Studies on the production of volatile fatty acids from grass in artificial rumen. 1. Volatile fatty acids production from fresh grasses. Journal of Agriculture Science 48: 315-321.
7. Casas, N., T. Parella, T. Vicen, G. Caminal and M. Sarra. 2009. Metabolites from the biodegradation of triphenylmethane dyes by Trametes versicolor or laccase. Chemosphere 75: 1344-1349.
8. Chakraborty, S., S. Chowdhury and P. D. Saha. 2011. Adsorption of crystal violet from aqueous solution onto NaOH-modified rice husk. Carbohydrate Polymers 86: 1533-1541.
9. Cheriaa, J., and A. Bakhrouf. 2009. Triphenylmethanes, malachite green and crystal violet dyes decolourisation by Sphingomonas paucimobilis. Annals of Microbiology 59: 57-61.
10. Czerkawaski, J. W. 1986. An introduction to rumen studies. Pergamon Press. Oxford. New York.
11. Fessard, V., T. Godard, S. Huet, A. Mourot and J. M. Poul. 1999. Mutagenicity of malachite green and leucomalachite green in vitro tests. Journal of Applied Toxicology 19: 421-430.
12. Kazemi, M., A. Eskandary Torbaghan, A. M. Tahmasbi, R. Valizadeh, and A. A. Naserian. 2017. Effects of phosalone consumption via feeding with or without sodium bentonite on performance, blood metabolites and its transition to milk of Iranian Baluchi sheep. Journal of Animal Science and Technology 59: 1-11.
13. Kazemi, M., A. M. Tahmasbi, R. Valizadeh, A. A. Naserian, R. Afshari and A. Sonei. 2013. Effect of phosalone as an organophosphate pesticide with different levels of bentonite on fermentation parameters of a TMR ration according to in vitro condition. Iranian Journal of Applied Animal Science 5: 201-209. (In Farsi).
14. Kazemi, M., M. Khabbaz Sirjani, A.M. Tahmasbi, E. Ibrahimi Khoram Abadi and A. Eskandary Torbaghan. 2017. Effects of sodium and calcium bentonite on growth performance and rumen ammonia in Holstein bulls. Livestock Research for Rural Development 29 (8). Available online at: http://www.lrrd.org/lrrd29/8/phd29144.html, Accessed 8 May 2018.
15. Kirby, N., G. McMullan and R. Marchant. 1995. Decolorization of an artificial textile effluent by Phanerochaete chrysosporium. Biotechnology Letters 17: 761-764.
16. Komolong, M. K., D. G. Barber and D. M. McNeill. 2001. Post-ruminal protein supply and N retention of weaner sheep fed on a basal diet of lucerne hay (Medicago sativa) with increasing levels of quebracho tannins. Animal Feed Science and Technology 92: 59-72.
17. Menke, K. H., and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development 28: 7-55.
18. Mittal, M., J. Mittal, A. Malviya, D. Kaur and V. K. Gupta. 2010. Adsorption of hazardous dye crystal violet from wastewater by waste materials. Journal of Colloid and Interface Science 343: 463-473.
19. Mohanty, K., J. T. Naidu, B. C. Meikap and M. N. Biswas. 2006. Removal of crystal violet from wastewater by activated carbons prepared from rice husk. Industrial and Engineering Chemistry Research 45: 5165-5171.
20. Mousavi, S. A., M. Khashij and P. Shahbazi. 2016. Adsorption isotherm study and factor affected on methylene blue decolorization using activated carbon powder prepared grapevine leaf. Journal of Safety Promotion and Injury Prevention 3: 249-256. (In Farsi).
21. Murray, P. J., Rowe, J. B. and Aitchison, E. M., 1990. The effect of bentonite on wool growth, liveweight change and rumen fermentation in sheep. Australian Journal of Experimental Agriculture 30: 39-42.
22. NRC. 2007. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids. 6rd ed. Washington: National Academy Press.
23. Ørskov, E. R., and I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal of Agricultural Science 92: 499-503.
24. Potter, T., C. Ellis and M. Levitt. 1985. Activated charcoal: In vivo and in vitro studies of effect on gas formation. Gastroenterology 88: 620-624.
25. Rindsig, R. B., L. H. Schultz and G. E. Shook. 1969. Effects of the addition of bentonite to high-grain dairy rations which depress milk fat percentage. Journal of Dairy Science 51: 1770-1775.
26. Shin, K. S., I. K. Oh and C. J. Kim. 1997. Production and purification of Remazol Brilliant Blue R decolorization peroxidase from the culture filtrate of Pleurotus ostreatus. Applied and Environmental Microbiology 63: 1744-1748.
27. Singh, K., and S. Arora. 2011. Removal of synthetic textile dyes from wastewaters: A critical review on present treatment technologies. Critical Reviews in Environmental Science and Technology 41: 807-878.
28. Theodorou, M. K., B. A.Williams, M. S. Dhanoa, A. B. McAllan and J. France. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology 48: 185-197.
29. Wanapat, M. 2000. Rumen manipulation to increase the efficient use of local feed resources and productivity of ruminants in the tropics. Asian-Australasian Journal of Animal Sciences Supplement 13B: 59-67.
30. Zhou, W., and W. Zimmermann. 1993. Decolorization of industrial effluents containing reactive dyes by actinomycetes. FEMS Microbiology Letters 107: 157-162.