استفاده از یک سیستم VNTR بومی شده متکی بر دو لوکوس در دسته بندی ژنتیکی جدایه‌های صحرایی بورخولدریا مالئی در ایران

نوع مقاله: مقاله کامل

نویسندگان

1 گروه زیست‌شناسی دانشگاه پیام نور، واحد تهران شرق، تهران، ایران. بخش توبرکولین PPD، موسسه تحقیقات واکسن و سرم سازی رازی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

2 بخش واکسن های باکتریایی هوازی دامپزشکی، موسسه تحقیقات واکسن و سرم سازی رازی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

3 بخش توبرکولین PPD، موسسه تحقیقات واکسن و سرم سازی رازی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

4 گروه زیست‌شناسی دانشگاه پیام نور، واحد تهران- شرق، تهران، ایران

چکیده

بورخولدریا مالئی باکتری مسبب مشمشه با میزبان‌های عمدتا تک سمی خود سازگای یافته است و قادر به ادامه حیات طولانی در خارج از بدن میزبان نیست. ایران بصورت سالانه اپیدمی‌های این بیماری را تجربه می‌نماید. در سال‌های اخیر ژنوتایپینگ مبتنی بر لوکوس‌های چندگانه متشکل از واحدهای تکرار‌شونده پشت سرهم به عنوان روش انتخابی برای مشمشه پذیرفته شده است. با هدف ارزیابی مقایسه‌ای قدرت تفریق دو لوکوس VNTR به نام‌های VNTR1217 و VNTR13 تکنیک VNTR-PCR بر روی 5 سویه بورخولدیا مالئی ایران اجرا گردید. توالی نوکلئوتیدهای محصولات PCR به منظور اطمینان از درستی اندازه و همچنین ساختار ژنتیکی تعیین گردید. ضمنا تعداد 29 سویه بورخولدریا مالئی نیزدر تحقیق وارد شدند. نتایج نشان دادند همه سویه‌ها در ژنوم خود لوکوس VNTR13 را که در تحقیق حاضر معرفی گردید حمل می نمایند در حالیکه وجود لوکوس VNTR1217 در ژنوم 4 سویه احراز نگردید. اندیکس Nei' di درمورد لوکوس VNTR13 بالاتر از VNTR1217 (0.8 در مقایسه با 0.74) تعیین گردید. تعداد آلل‌های شناخته شده توسط لوکوس‌های VNTR13 و VNTR1217 در میان سویه‌های ایران بترتیب 2 و 3 مورد بود. بر اساس این یافته ها اگر بنا بر انتخاب مجموعه ای از لوکوس های VNTR مناسب برای معرفی یک سیستم جهانی MLVA در مورد بورخولدریا مالئی وجود داشته باشد لازم است همه لوکوس‌های فعلی بر روی کلکسیونی از سویه‌های بورخولدریا مالئی از تمام جهان مورد آزمایش قرار گیرد. انجام چنین تحقیق گسترده‌ای تنها در صورت همکاری میان آزمایشگاه‌های مرجع مورد تایید OIE امکان پذیر خواهد بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A customized dual-locus VNTR combination for genotyping Burkholderia mallei field isolates in Iran

نویسندگان [English]

  • Sh. Dashtipour 1
  • K. Tadayon 2
  • N. Mosavari 3
  • S.K. Bidouki 4
1 PPD Tuberculin Department, Razi Vaccine & Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
2 Veterinary Aerobic Bacteria Vaccines Department, Razi Vaccine & Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
3 PPD Tuberculin Department, Razi Vaccine & Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
4 Genetic & Biotechnology department, Faculty of Scinces, Payame Noor University, Tehran Shargh Branch; Thran, Iran.
چکیده [English]

Burkholderia mallei, the causative agent of Glanders, is a host-adapted bacterium that does not survive outside of its mostly soliped hosts. Iran is among those countries that experience annual outbreaks of the disease. Recently, multiple locus variable number of tandem repeat analysis (MLVA) has achieved broad acceptance as the method of choice in genotyping of B. mallei. In order to comparative assessment of diversity indices provided by two tandem repeat loci namely VNTR1217 and VNTR13, five Iranian B. mallei strains were examined by VNTR-PCR. The amplification products were sequenced to guaranty accuracy of sizing and nucleotide structure of unit repeats. A further 29 B. mallei strains were also included in the study. As observed, all the 34 B. mallei strains carried the VNTR13 locus that was characterized by this study while VNTR1217 was missing in the genome of 4 studied strains. A higher Nei's diversity index (Nei' di=0.80) was presented by VNTR13 compared to that of VNTR1217 (Nei's di= 0.74) when MLVA applied on the whole panel of 34 strains. Among the Iranian strains, VNTR13 detected 3 alleles while VNTR1217 found two alleles. Findings of this study back the assumption that if a standard panel of VNTR loci are to be selected for a universal MLVA typing system suitable for B. mallei, all the reported loci from across the world are then expected to assess against a global collection of B. mallei strains. Such extensive investigation is possible only if an international collaboration between OIE-approved Glanders reference laboratories is set.

کلیدواژه‌ها [English]

  • Burkholderia mallei
  • VNTR
  • Epidemiology
  • Iran
1- Carver T., S.R. Harris, T.D. Otto, M. Berriman, J. Parkhill and J.A. McQuillan. 2012. BamView: visualizing and interpretation of next-generation sequencing read alignments. Briefings in bioinformatics 14,203-212.
2- Chantratita N., M. Vesaratchavest, V. Wuthiekanun, R. Tiyawisutsri, T. Ulziitogtokh, E. Akcay, N.P. Day and S.J. Peacock. 2006. Pulsed-field gel electrophoresis as a discriminatory typing technique for the biothreat agent Burkholderia mallei. Am J Trop Med Hyg 74,345-347.
3- Currie B.J., A. Haslem, T. Pearson, H. Hornstra, B. Leadem, M. Mayo, D. Gal, L. Ward, D. Godoy, B.G. Spratt and P. Keim. 2009. Identification of melioidosis outbreak by multilocus variable number tandem repeat analysis. Emerg Infect Dis 15,169-174.
4- Elschner M.C., H. Neubauer and L.D. Sprague. 2017. The Resurrection of Glanders in a new Epidemiological Scenario: A Beneficiary of “Global Change”. Current Clinical Microbiology Reports 4,54-60.
5- Elschner M.C., P. Thomas and F. Melzer. 2016. Complete Genome Sequence of a Burkholderia mallei Isolate Originating from a Glanderous Horse from the Kingdom of Bahrain. Genome Announc 4.
6- Godoy D., G. Randle, A.J. Simpson, D.M. Aanensen, T.L. Pitt, R. Kinoshita and B.G. Spratt. 2003. Multilocus sequence typing and evolutionary relationships among the causative agents of melioidosis and glanders, Burkholderia pseudomallei and Burkholderia mallei. J Clin Microbiol 41,2068-2079.
7- Harvey S.P. and J.M. Minter. 2005. Ribotyping of Burkholderia mallei isolates. FEMS immunology and medical microbiology 44,91-97.
8- Johnson S.L., K.A. Bishop-Lilly, J.T. Ladner, H.E. Daligault, K.W. Davenport, J. Jaissle, K.G. Frey, G.I. Koroleva, D.C. Bruce, S.R. Coyne, S.M. Broomall, N. Ketheesan, M. Mayo, A. Hoffmaster, M.G. Elrod, V. Wuthiekanun, A. Tuanyok, R. Norton, B.J. Currie, D.M. Wagner, P. Keim, P.E. Li, H. Teshima, H.S. Gibbons, G.F. Palacios, C.N. Rosenzweig, C.L. Redden, Y. Xu, T.D. Minogue and P.S. Chain. 2016. Correction for Johnson et al., Complete genome sequences for 59 Burkholderia isolates, both pathogenic and near neighbor. Genome Announc 4.
9- Johnson S.L., K.A. Bishop-Lilly, J.T. Ladner, H.E. Daligault, K.W. Davenport, J. Jaissle, K.G. Frey, G.I. Koroleva, D.C. Bruce, S.R. Coyne, S.M. Broomall, P.E. Li, H. Teshima, H.S. Gibbons, G.F. Palacios, C.N. Rosenzweig, C.L. Redden, Y. Xu, T.D. Minogue and P.S. Chain. 2015. Complete genome sequences for 59 burkholderia isolates, both pathogenic and near neighbor. Genome Announc 3.
10- Khaki P., N. Mosavari, N.S. Khajeh, M. Emam, M. Ahouran, S. Hashemi, M.M. Taheri, D. Jahanpeyma and S. Nikkhah. 2012. Glanders outbreak at Tehran Zoo, Iran. Iranian journal of microbiology 4,3-7.
11- Larsson A. 2014. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics (Oxford, England) 30,3276-3278.
12- Lin Y., Q. Wu, X. Liu, S. Dong, L. Wu, H. Pei, K. Xu and Q. Xia. 2016. Molecular tracking investigation of melioidosis cases reveals regional endemicity in Hainan, China. Biomed Rep 5,766-770.
13- Malik P., H. Singha, S.K. Goyal, S.K. Khurana, B.N. Tripathi, A. Dutt, D. Singh, N. Sharma and S. Jain. 2015. Incidence of Burkholderia mallei infection among indigenous equines in India. Veterinary record open 2,e000129.
14- Michelle Wong Su Y., O. Lisanti, F. Thibault, S. Toh Su, K. Loh Gek, V. Hilaire, L. Jiali, H. Neubauer, G. Vergnaud and V. Ramisse. 2009. Validation of ten new polymorphic tandem repeat loci and application to the MLVA typing of Burkholderia pseudomallei isolates collected in Singapore from 1988 to 2004. J Microbiol Methods 77,297-301.
15- Najafpour R., N. Mosavari, K. Tadayon and E. Tajbakhsh. 2015. Optimization of variable number tandem repeat (VNTR) analysis in the classical PCR machines for typing of Burkholderia mallei.
16- Price E.P., H.M. Hornstra, D. Limmathurotsakul, T.L. Max, D.S. Sarovich, A.J. Vogler, J.L. Dale, J.L. Ginther, B. Leadem, R.E. Colman, J.T. Foster, A. Tuanyok, D.M. Wagner, S.J. Peacock, T. Pearson and P. Keim. 2010. Within-host evolution of Burkholderia pseudomallei in four cases of acute melioidosis. PLoS pathogens 6,e1000725.
17- Scholz H.C., T. Pearson, H. Hornstra, M. Projahn, R. Terzioglu, R. Wernery, E. Georgi, J.M. Riehm, D.M. Wagner, P.S. Keim, M. Joseph, B. Johnson, J. Kinne, S. Jose, C.M. Hepp, A. Witte and U. Wernery. 2014. Genotyping of Burkholderia mallei from an outbreak of glanders in Bahrain suggests multiple introduction events. PLoS Negl Trop Dis 8,e3195.
18- Segonds C., M. Thouverez, A. Barthe, N. Bossuet-Greif, L. Tisseyre, P. Plesiat, G. Vergnaud, G. Chabanon and C. Pourcel. 2015. Development of a multiple-locus variable-number tandem-repeat typing scheme for genetic fingerprinting of Burkholderia cenocepacia and application to nationwide epidemiological analysis. J Clin Microbiol 53,398-409.
19- Tabrizi E., K. Tadayon, N. Mosavari, E. Tajbakhsh, R. Keshavarz, R. Ghaderi, M. Sekhavati, R. Banihashemi, R. Najafpour and M. Haghighat. 2016. Genomic structure of Burkholderia mallei Razi 325, the strain used for industrial production of Mallein in Iran. Journal of Gorgan University of Medical Sciences 18.
20- Taghipour A., N.S.M. Khaje, M.S. Ghaazi, Z.S. Masoodi and H. Molookpour. 2011. First clinical report of the Glanders in Siberian tiger (Panthera tigris altaica).
21- Tanpiboonsak S., A. Paemanee, S. Bunyarataphan and S. Tungpradabkul. 2004. PCR-RFLP based differentiation of Burkholderia mallei and Burkholderia pseudomallei. Molecular and cellular probes 18,97-101.
22- Titball R.W., M.N. Burtnick, G.J. Bancroft and P. Brett. 2017. Burkholderia pseudomallei and Burkholderia mallei vaccines: Are we close to clinical trials? Vaccine 35,5981-5989.
23- U'Ren J M., H. Hornstra, T. Pearson, J.M. Schupp, B. Leadem, S. Georgia, R.W. Sermswan and P. Keim. 2007. Fine-scale genetic diversity among Burkholderia pseudomallei soil isolates in northeast Thailand. Appl Environ Microbiol 73,6678-6681.
24- U'Ren J.M., J.M. Schupp, T. Pearson, H. Hornstra, C.L. Friedman, K.L. Smith, R.R. Daugherty, S.D. Rhoton, B. Leadem, S. Georgia, M. Cardon, L.Y. Huynh, D. DeShazer, S.P. Harvey, R. Robison, D. Gal, M.J. Mayo, D. Wagner, B.J. Currie and P. Keim. 2007. Tandem repeat regions within the Burkholderia pseudomallei genome and their application for high resolution genotyping. BMC Microbiol 7,23.
25- Untergasser A., H. Nijveen, X. Rao, T. Bisseling, R. Geurts and J.A. Leunissen. 2007. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35,W71-74.
26- Zheng X., L.X. Wang, H. Wu, H. Chen, X. Zhu, J.R. He, L.X. Xia and W. Li. 2017. [Homology analysis and historical tracing for inter-continental Burkholderia pseudomallei strains of sequence type 562]. Zhonghua liu xing bing xue za zhi = Zhonghua liuxingbingxue zazhi 38,661-664.