ارزیابی بیومکانیکی داربست سه بعدی زیستی تهیه شده از تاندون شترمرغ به عنوان گرافت

نوع مقاله: مقاله کامل

نویسندگان

گروه علوم پایه، دانشکده دامپزشکی، دانشگاه ارومیه، ارومیه، ایران

چکیده

هدف اصلی در مهندسی بافت ایجاد ساختاری مشابه ساختار طبیعی موجود در بدن موجود زنده، جهت ترمیم آسیب‌های بافتی است. همواره مشکلاتی در انجام پیوند بافت وجود داشته است. از جمله کمبود منابع بافتی مناسب و پس‌زدن ایمونولوژیک بافت‌های پیوند زده شده است؛ در مهندسی بافت یکی از جدیدترین روش‌ها به منظور کاهش واکنش ایمنی بدن نسبت به بافت پیوند زده شده، روش سلول‌زدایی بافت است. تعداد 12 نمونه تاندون آشیل شترمرغ در دو گروه سلول زدایی شده (گرافت) و نشده (کنترل) از شتر مرغ نر 2 تا 3 ماهه تهیه گردید. عمل سلول‌زدایی با سدیم دودسیل سولفات انجام شد. پس از ثبوت و طی روند معمول تهیه مقاطع بافتی، به منظور ارزیابی ساختار بافتی از رنگ آمیزی‌های هماتوکسیلین-ائوزین، پیکروسیروس قرمز و جهت بررسی میزان سلول‌زدایی و بقایای هسته از رنگ آمیزی DAPI استفاده گردید و ارزیابی استحکام بافتی به وسیله آزمون بیومکانیکی انجام شد. نتایج حاصل  از آن توسط Student-Test و Mann-Whithney با نرم افزار SPSS، در دامنه (05/0 ≥ p) مورد ارزیابی قرار گرفتند. در ارزیابی میزان سلول‌زدایی، 99% گرافت فاقد هسته و بقایای DNA بود. گروه کنترل در مقایسه  بازنوگرافت پس از طی فرآیند سلول زدایی، از نظر کیفیت کلاژنی فاقد اختلاف معنی‌دار و از نظر  نظم رشته‌ای دارای اختلاف معنی‌داری بود. در آزمون بیومکانیکی میزان تنش تفاوت معنی‌داری مشاهده نشد ولی در کرنش بافتی گرافت کاهش معنی‌داری را نشان داد. با ارزیابی خصوصیات ساختار بافتی و بیومکانیکی داربست سه بعدی تهیه شده در مقایسه با تاندون شترمرغ، مشخص شد این زنوگرافت دارای شرایط مناسب برای پیوند می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Biomechanical evaluation of three-dimensional biological scaffold made from Ostrich tendons as graft

نویسندگان [English]

  • S. Hosseini
  • Sh. Hasanzadeh
  • A. Shahrooz
Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
چکیده [English]

The main goal of tissue engineering design and create a structure similar to the natural structure of a tissue in vivo for repair tissue damages. Tissue transplantation, there are always problems, including a shortage of suitable tissue and immunological rejection of grafted tissue is in tissue engineering is one of the newest methods to reduce the immune response to transplanted tissue, is tissue decellularization methods (Acellular). After fixation and routine tissue  process, to evaluate the structure of tissue H&E stained, collagen quality assessment xenograft Picrosirius red stained , review and tracking the decellularization, detected  nuclei trace and any DNA remaining 4', 6'diamino-2-phenylindole-2HCl (DAPI) staining was used. Assess tissue strength by biomechanical test was performed. Biomechanical results by Student t-Test and Mann-Whithney (P≤0.05)was performed with SPSS software. Compared with ostrich tendonsand  matrix three-dimensional structure after the process of decellularization, the tissue density is somewhat reduced cohesion between collagen fibers were observed in some places a few miles away. Quality collagen stained by Picrosirius red that there is no difference between them. In assessing the amount of de-cells after staining DAPI 99% of the three-dimensional scaffold and remains free of nuclear DNA. Biomechanical testing of Stress, there was no difference in graft tissue but strain showed a significant decrease. Evaluation of properties of three-dimensional tissue structure made of scaffolding and comparison with ostrich tendons found this graft is the appropriate for graft.

کلیدواژه‌ها [English]

  • Graft
  • tendon
  • three-dimensional scaffold
  • Acellular
  • Ostrich

1. Adams, J. E., M. E. Zobitz, J. S. Reach Jr, K.-N. An and S. P. Steinmann (2006). "Rotator cuff repair using an acellular dermal matrix graft: an in vivo study in a canine model." Arthroscopy: The Journal of Arthroscopic & Related Surgery, 22(7): 700-709.
2. Alam, M., W. Gordon, S. Heo, K. Lee, N. Kim, M. Kim and H. Lee (2013). "Augmentation of ruptured tendon using fresh frozen Achilles tendon allograft in two dogs: a case report." Veterinarni Medicina, 58(1): 50-55.
3. Azhim, A., T. Ono, Y. Fukui, Y. Morimoto, K. Furukawa and T. Ushida (2013). Preparation of decellularized meniscal scaffolds using sonication treatment for tissue engineering. Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE.
4. Badylak, S. F. (2004). "Xenogeneic extracellular matrix as a scaffold for tissue reconstruction." Transplant Immunology, 12 (3–4): 367-377.
5. Badylak, S. F. and J. E. Valentin (2010). "Extracellular Matrix Bioscaffolds for Orthopaedic Applications." The Journal of Bone & Joint Surgery, 92(5): 1317-1318.
6. Bigham, A., A. Z. Moghaddam, H. Nourani, M. C. Bashi and A. Raeisi (2010). "Ostrich tendon (new xenogenic) transplantation in rabbit model." Comparative Clinical Pathology, 19(2): 185-188.
7. Carpenter, J. E. and K. D. Hankenson (2004). "Animal models of tendon and ligament injuries for tissue engineering applications." Biomaterials, 25(9): 1715-1722.
8. Chen, J., J. Xu, A. Wang and M. Zheng (2009). "Scaffolds for tendon and ligament repair: review of the efficacy of commercial products."
9. Chen, T. M., W. M. Rozen, W. r. Pan, M. W. Ashton, M. D. Richardson and G. I. Taylor (2009). "The arterial anatomy of the Achilles tendon: anatomical study and clinical implications." Clinical Anatomy, 22(3): 377-385.
10. Docheva, D., S. A. Muller, M. Majewski and C. H. Evans (2015). "Biologics for tendon repair." Adv Drug Deliv Rev. 84: 222-239.
11. Guidoin, M.-F., Y. Marois, J. Bejui, N. Poddevin, M. W. King and R. Guidoin (2000). "Analysis of retrieved polymer fiber based replacements for the ACL." Biomaterials, 21(23): 2461-2474.
12. Hampson, K., N. Forsyth, A. El Haj and N. Maffulli (2008). "Tendon tissue engineering." Topics in tissue engineering 4.
13. Hockings, M. and C. Nester (2000). "Use of dorsal ankle orthoses in the management of Achilles tendon rupture." The Foot, 10(1): 51-54.
14. Kvist, M. (1994). "Achilles tendon injuries in athletes." Sports Medicine, 18(3): 173-201.
15. Leigh, D. R., M. Mesiha, A. R. Baker, E. Walker and K. A. Derwin (2012). "Host response to xenograft ECM implantation is not different between the shoulder and body wall sites in the rat model." Journal of Orthopaedic Research, 30(11): 1725-1731.
16. Longo, U. G., A. Lamberti, N. Maffulli and V. Denaro (2010). "Tendon augmentation grafts: a systematic review." British medical bulletin, 94(1): 165-188.
17. Longo, U. G., A. Lamberti, N. Maffulli and V. Denaro (2011). "Tissue engineered biological augmentation for tendon healing: a systematic review." British Medical Bulletin, 98(1): 31-59.
18. Longo, U. G., A. Lamberti, S. Petrillo, N. Maffulli and V. Denaro (2011). "Scaffolds in tendon tissue engineering." Stem cells international, 2012.
19. Moshiri, A. and A. Oryan (2012). "Role of tissue engineering in tendon reconstructive surgery and regenerative medicine: current concepts, approaches and concerns." Hard Tissue, 1(2): 11.
20. Ning, L. J., Y. Zhang, X. H. Chen, J. C. Luo, X. Q. Li, Z. M. Yang and T. W. Qin (2012). "Preparation and characterization of decellularized tendon slices for tendon tissue engineering." Journal of Biomedical Materials Research Part A, 100(6): 1448-1456.
21. Pridgen, B. C., C. Y. Woon, M. Kim, J. Thorfinn, D. Lindsey, H. Pham and J. Chang (2011). "Flexor tendon tissue engineering: acellularization of human flexor tendons with preservation of biomechanical properties and biocompatibility." Tissue Engineering Part C: Methods 17(8): 819-828.
22. Record, R. D., D. Hillegonds, C. Simmons, R. Tullius, F. A. Rickey, D. Elmore and S. F. Badylak (2001). "In vivo degradation of 14 C-labeled small intestinal submucosa (SIS) when used for urinary bladder repair." Biomaterials, 22(19): 2653-2659.
23. Rich, L. and P. Whittaker (2005). "Collagen and picrosirius red staining: a polarized light assessment of fibrillar hue and spatial distribution." Braz J Morphol Sci. 22(2): 97-104.
24. Rubenson, J., D. G. Lloyd, T. F. Besier, D. B. Heliams and P. A. Fournier (2007). "Running in ostriches (Struthio camelus): three-dimensional joint axes alignment and joint kinematics." J Exp Biol. 210(Pt 14): 2548-2562.
25. Ruzzini, L., U. G. Longo, S. Campi, N. Maffulli, A. O. Muda and V. Denaro (2013). "Adhesion and collagen production of human tenocytes seeded on degradable poly (urethane urea)." Knee Surgery, Sports Traumatology, Arthroscopy, 21(8): 1834-1840.
26. Saltzman, C. L. and D. S. Tearse (1998). "Achilles tendon injuries." Journal of the American Academy of Orthopaedic Surgeons, 6(5): 316-325.
27. Santucci, R. A. and T. D. Barber (2005). "Resorbable extracellular matrix grafts in urologic reconstruction." International braz j urol. 31(3): 192-203.
28. Schaller, N. U., K. D'Aout, R. Villa, B. Herkner and P. Aerts (2011). "Toe function and dynamic pressure distribution in ostrich locomotion." J Exp Biol. 214(Pt 7): 1123-1130.
29. Schaller, N. U., B. Herkner, R. Villa and P. Aerts (2009). "The intertarsal joint of the ostrich (Struthio camelus): Anatomical examination and function of passive structures in locomotion." J Anat. 214(6): 830-847.
30. Shapiro, E., D. Grande and M. Drakos (2015). "Biologics in Achilles tendon healing and repair: a review." Curr Rev Musculoskelet Med. 8(1): 9-17.
31. Shea, K. P., M. B. McCarthy, F. Ledgard, C. Arciero, D. Chowaniec and A. D. Mazzocca (2010). "Human Tendon Cell Response to 7 Commercially Available Extracellular Matrix Materials: An In Vitro Study." Arthroscopy: The Journal of Arthroscopic & Related Surgery. 26(9): 1181-1188.
32. Shearn, J. T., K. R. Kinneberg, N. A. Dyment, M. T. Galloway, K. Kenter, C. Wylie and D. L. Butler (2011). "Tendon tissue engineering: progress, challenges, and translation to the clinic." J Musculoskelet Neuronal Interact. 11(2): 163-173.
33. Smith, N. C., A. M. Wilson, K. J. Jespers and R. C. Payne (2006). "Muscle architecture and functional anatomy of the pelvic limb of the ostrich (Struthio camelus)." J Anat. 209(6): 765-779.
34. Thevendran, G., K. Sarraf, N. Patel, A. Sadri and P. Rosenfeld (2013). "The rupturedAchilles tendon: a current overview from biology of rupture to treatment." Musculoskeletal surgery: 1-12.
35. Tischer, T., S. Vogt, S. Aryee, E. Steinhauser, C. Adamczyk, S. Milz, V. Martinek and A. Imhoff (2007). "Tissue engineering of the anterior cruciateligament: a new method using acellularized tendon allografts and autologous fibroblasts." Archives of Orthopaedic and Trauma Surgery, 127(9): 735-741.
36. Tong, W. Y., W. Shen, C. W. Yeung, Y. Zhao, S. H. Cheng, P. K. Chu, D. Chan, G. C. Chan, K. Cheung and K. W. Yeung (2012). "Functional replication of the tendon tissue microenvironment by a bioimprinted substrate and the support of tenocytic differentiation of mesenchymal stem cells." Biomaterials, 33(31): 7686-7698.
37. Vacanti, C. A. (2006). "The history of tissue engineering." Journal of cellular and molecular medicine, 10(3): 569-576.
38. Valentin, J. E., J. S. Badylak, G. P. McCabe and S. F. Badylak (2006). "Extracellular matrix bioscaffolds for orthopaedic applications." The Journal of Bone & Joint Surgery, 88(12): 2673-2686.
39. Veillette, C. J., K. D. Cunningham, D. A. Hart, M. J. Fritzler and C. B. Frank (1998). "Localization and Characterization of Porcine Patellar Tendon Xenograft Antigens in A Rabbit Model of Medial Collateral Ligament Replacement1, 2." Transplantation, 65(4): 486-493.
40. Whitlock, P. W., T. L. Smith, G. G. Poehling, J. S. Shilt and M. Van Dyke (2007). "A naturally derived, cytocompatible, and architecturally optimized scaffold for tendon and ligament regeneration." Biomaterials, 28(29): 4321-4329.
41. Wisbeck, J. M., B. G. Parks and L. C. Schon (2012). "Xenograft scaffold full-wrap reinforcement of Krackow achilles tendon repair." Orthopedics, 35(3): e331-334.
42. Zhang, X., D. Bogdanowicz, C. Erisken, N. M. Lee and H. H. Lu (2012). "Biomimetic scaffold design for functional and integrative tendon repair." J Shoulder Elbow Surg. 21(2): 266-277.
43. Zheng, M., J. Chen, Y. Kirilak, C. Willers, J. Xu and D. Wood (2005). "Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: possible implications in human implantation." Journal of Biomedical Materials Research Part B: Applied Biomaterials, 73(1): 61-67.