تغییر قطبیت غشاء باکتری های پروبیوتیک در شرایط آزمایشگاهی

نوع مقاله: مقاله کامل

نویسندگان

1 عضو هیئت علمی بخش پژوهش های بیوتکنولوژی مؤسسه تحقیقات علوم دامی کشور

2 عضو هیئت علمی موسسه تحقیقات واکسن و سرم سازی رازی

3 عضو هیئت علمی بخش مدیریت پرورش دام و طیور-موسسه تحقیقات علوم دامی کشور

چکیده

اغلب لاکتوباسیل های پروبیوتیک به سطوح روده می چسبند که این پدیده تحت تأثیر اسیدهای چرب قرار می گیرد . این پروژه جهت افزایش خاصیت آب گریزی سطح سلول باکتری ها و بهبود عملکرد آن ها طراحی گردید و به این منظور، محیط های کشت MRS براوث حاوی اسیدهای چرب اشباع ( استئاریک اسید و پالمیتیک اسید) ،غیر اشباع( α لینولنیک اسید، γ لینولنیک اسید، لینولئیک اسید، آراشیدونیک اسید، اولئیک اسید و ...)، مخلوط آن ها و یک محیط کنترل بدون اسید چرب، جهت رشد دو نوع باکتری لاکتوباسیلوس رامنوزوس و یک استارتر تجاری مورد استفاده قرار گرفتند. چربی سلولی باکتری ها استخراج، صابونی و متیله شده و میزان اسیدهای چرب آنها با استفاده از دستگاه کروماتوگرافی گازی اندازه گیری شدند. تغییرات خاصیت آب گریزی و آب دوستی غشاء باکتری های کشت شده با استفاده از حلال های اتیل استات (قطبی) و اکتان(غیر قطبی) و روش اسپکتروفتومتری تخمین زده شدند. نتایج این بررسی نشان داد که افزودن اسیدهای چرب آزاد به محیط کشت باعث تغییراتی در اسیدهای چرب سلولی باکتری می گردد و نتایج شاخص قطبیت غشاء نشان داد که محیط های حاوی مخلوط اسیدهای چرب اشباع و غیر اشباع بخصوص در مورد استارتر از قطبیت بیشتری برخوردار بوده و کشش بیشتری به حلال قطبی دارند و کشت استارتر در محیط اسیدهای چرب غیر اشباع باعث افزایش معنی دارنسبت اسیدهای چرب غیر اشباع به اشباع در سلول باکتری گردید. لاکتوباسیلوس رامنوزوس در هر چهار محیط مورد آزمایش خواص غیر قطبی(در نتیجه تمایل بیشتر به اتصال با موکوس روده) را از خود نشان داد.

کلیدواژه‌ها


عنوان مقاله [English]

Change the polarity of probiotic bacteria membrane in vitro

نویسندگان [English]

  • N. Vaseji, 1
  • N. Mojgani, 2
  • A. Sadeghipanah, 3
1 Member of scientific board,Dept. of Biotechnology, Animal Science Research Institute of Iran (ASRI), Shahid Beheshti St.,Karaj, Iran
2 Member of scientific board , Dept. of Biotechnology, Razi Vaccine and Serum Research Institute, Karaj, IR Iran
3 of scientific board , Dept. of Animal Breeding,ASRI.
چکیده [English]

Most of probiotic Lactobacilli adhere to intestinal surfaces, a phenomenon influenced by free fatty acids. this project to increase hydrophobicity properties of bacterial cell surface and increase performance of them ,was designed and for this purpose, MRS broth media including saturated (palmitic acid,stearic acid),unsaturated fatty acids(α-linolenic acid,ɣ-linolenic acid,linoleic acid , Arachidonic acid,oleic acid and….), mix of them and control(without fatty acids),for growth lactobacillus rhamnosus and a commercial starter was investigated. Extraction, saponification and methylaton of Fat-cell bacteria by gas chromatography was measured.Changes in hydrophobic and hydrophilic properties of cultured bacteria were estimated with ethylacetat(polar solvent) ,octan(non polar solvent) and spectrophotometric method. The results of this analysis indicated that Addition of free fatty acids to culture medium Cause changes in cellular fatty acid bacteria and the results of membrane polarity index showed that medium included mix of saturated and unsaturated fatty acids In particular in starter bacteria, have more affinity for polar solvent and starter bacteria in medium including unsaturated fatty acids causes significant increase ratio of unsaturated fatty acids to saturated in cell bacteria. Lactobacillus rhamnosus in all of experiments showed Nonpolar properties(tendency to bind to the intestinal mucosa).

کلیدواژه‌ها [English]

  • Probiotic
  • fatty acids
  • lactobacillus rhamnosus
  • starter
  • connectivity

1-Aro H., Järvenpää E., Mäkinen J., Lauraeus M., Huopalahti R., Hietaniemi V(2013). The utilization of oat polar lipids produced by supercritical fluid technologies in the encapsulation of probiotics. LWT - Food Science and Technology xxx . 1-7.
2- Ana Paula do Espı´rito Santo., Roberta C. Silva., Fabiana A.S.M. Soares., Douglas Anjos, Luiz A. Gioielli., Mariceˆ N. Oliveira(2010). Açai pulp addition improves fatty acid profile and probiotic viability in yoghurt. International Dairy Journal. 20 : 415–422.
3- Brisson G, Payken HF, Sharpe JP, Jiménez-Flores R. Characterization of Lactobacillus reuteri interaction withmilk fat globulemembrane components in dairy products. J Agric Food Chem 2010;58:5612–9.
4- Bzducha-Wro´bel A., Kieliszek M., Bła_zejak S (2013). Chemical composition of the cell wall of probiotic and brewer’s yeast in response to cultivation medium with glycerol as a carbon source. Eur Food Res Technol . DOI 10.1007/s00217-013-2016-8.
5-Chichlowski M, De Lartigue G, German JB, Raybould HE, Mills DA (2012). Bifidobacteria isolated from infants and cultured on human milk oligosaccharides affect intestinal epithelial function. J Pediatr Gastroenterol Nutr. ;55(3):321-7.
6- Di Criscio, T., A. Fratianni, R. Mignogna, L. Cinquanta, R. Coppola, E. Sorrentino ,and G. Panfili (2010).Production of functional probiotic, prebiotic. Journal of Dairy Science.93:4555-4564.
7- Gusils, C., S. Cuozzo, F. Sesma, and S. Gonzalez. (2002). Examination of adhesive determinants in three species of Lactobacillus isolated from chicken. . Can. J. Microbiol, 48, 34–42.
8- Jiménez-Flores R, Brisson G ( 2008). The milk fat globule membrane as an ingredient: why,
how, when? Dairy Sci Technol;88:5–18.
9- Jiang, J., L. Bjo¨rck, and R. Fonden. (1998). Production of conjugated linoleicacid by dairy starter cultures. J. Appl. Microbiol, 85, 95–102.
10- Kankaanpää, P. E., S. J. Salminen, E. Isolauri, and Y. K. Lee. (2001). The influence of polyunsaturated fatty acids on probiotic growth and adhesion. FEMS Microbiol. Lett, 194, 149-153.
11- Kankaanpa¨a.P ., Y. B., Kallio. H., Isolauri. E and Salminen. S. (2004). Effects of Polyunsaturated Fatty Acids in Growth Medium on Lipid Composition and on Physicochemical Surface Properties of Lactobacilli. Applied and Environmental Microbiology, 70(1), 129–136.
12- Kirjavainen, P. V., A. C. Ouwehand, E. Isolauri, and S. J. Salminen. (1998). The ability of probiotic bacteria to bind to human intestinal mucus. FEMS Microbiol. Lett, 167, 185-189.
13- Kimoto-Nira H., Suzuki S., Yakabe T and Suzuki C (2012). Relationships between fatty acid composition and bile tolerance in lactobacillus isolates from plants and from non-plant materials. J. Microbiol. 58: 1396–1404.
14- Ly MH, Vo NH, Le TM, Belin JM, Waché Y(2006). Diversity of the surface properties of Lactococci and consequences on adhesion to food components. Colloids Surf B Bio interfaces;52:149–53.
15- Miyazawa K., He F., Kawase M., Kubota A., Yoda K and Hiramatsu M(2011). Enhancement of immunoregulatory effects of Lactobacillus gasseri TMC0356 by heat treatment and culture medium. Applied Microbiology 53, 210–216.
16- Muller J. A ., Ross R. P., Sybesma W. F. H., Fitzgerald G. F and Stanton C(2011). Modification of the Technical Properties of Lactobacillus johnsonii NCC 533 by Supplementing the Growth Medium with Unsaturated Fatty Acids. Appl. Environ. Microbiol. vol. 77 no. 19 6889-6898.
17- Ouwehand, A., P. Kirjavainen, C. Shortt, and S. Salminen. (1999). Probiotics: mechanisms and established effects. Int. Dairy, J, 9, 43-52.
18- Polak-Berecka M., Waśko A., Paduch R., Skrzypek T., Sroka-Bartnicka A(2014). The effect of cell surface components on adhesion ability of Lactobacillus rhamnosus. Antonie van Leeuwenhoek 106(4):751-62
19- Qinglong Wu and Nagendra P. Shah. (2014). Bacterial Growth and Cell Surface Hydrophobicity of Lactobacilli. Journal of Food Science. Volume 79, Issue 12, pages M2485–M2490
20- Remagni M C ., Paladino M ., Locci F ., Flora V. Romeo ., Zago M ., Povolo M., Contarini G ., Carminati D(2013). Cholesterol removal capability of lactic acid bacteria and related cell membrane fatty acid modifications. Folia Microbiol .58:443–449.
21- Salminen S., A. v. W., L.Morelli, P. Marteau, D. Brassart, W. M. de Vos, R. Fonden ,K. Collins, G. Mogensen, S.- E. Birkeland and T. Mattila Sandholm. (1998). Demonstration of safety of probiotics-a review. Int. J. Food Prot, 44, 93-106.
22- Shakeri, M. (1382). The use Sweet butter water in the production of probiotic yogurt (Master Thesis), Ferdowsi University of Mashhad.
23- Sahadeva, R.P.K., Leong, S.F., Chua, K. H., Tan, C.H., Chan, H.Y.,Tong, E.V., Wong, S.Y.W. and *Chan, H.K. (2011). Survival of commercial probiotic strains to pH and bile. International Food Research Journal 18(4): 1515-1522 (2011).
24- Sanchez, B., C. G. De Los Reyes-Gavilan, A. Margolles, and M.Gueimonde.2009. Probiotic fermented milks: Present and future. Int.J. Dairy Technol. 62:472–483.
25- Sengupta R., Altermann E., Anderson R., McNabb W., Moughan P and Roy N(2013). The Role of Cell Surface Architecture of Lactobacilli in Host-Microbe Interactions in the Gastrointestinal Tract. Mediators of Inflammation. Volume 2013 , Article ID 237921, 16 pages.
26- Shakirova L., Auzina L., Zikmanis P., Gavare M., Grube1 M(2010). Influence of growth conditions on hydrophobicity of Lactobacillus acidophilus and Bifidobacterium lactis cells and characteristics by FT-IR spectra. Journal of Spectroscopy. 24 : 3-4, 251-255
27- Shakirova L., Grube M., Gavare M., Auzina L., Zikmanis P(2013). Lactobacillus acidophilus La5 and Bifidobacterium lactis Bb12 cell surface hydrophobicity and survival of the cells under adverse environmental conditions. J Ind Microbiol Biotechnol . 40:85–93.
28- Šuškuvic J., Blaženka Kos., Jasna Beganovic., Andreja Leboš Pavunc., Ksenija Habjani and Srecko Matošic (2010). Antimicrobial Activity – The Most Important Property of Probiotic and Starter Lactic Acid Bacteria. Food Technol. Biotechnol. 48 (3) 296–307.
29- Tuomola, E. M., and S. J. Salminen. (1998). Adhesion of some probiotic and dairy Lactobacillus strains to Caco-2 cell cultures. Int. J. Food Microbiol, 41, 45-51.
30- Vasiljevic, T. and Shah, N.P( 2008). Probiotics-From Metchnikoff to bioactives. International Dairy Journal18: 714-728.
31- Wadström, T., K. Andersson, M. Sydow, L. Axelsson, S. Lindgren, and B. Gullmar. (1987). Surface properties of lactobacilli isolated from the small intestine of pigs. J. Appl. Bacteriol, 62, 513-520.
32- Zhong J L., Li J.Y., Zhang L., Guo C., Yi H., Zhang Y., Li Q(2011). Probiotic Characteristics of Conjugated Linoleic Acid Producing Bacteria. Advanced Materials Research. 345:153-147.