شناسایی جهش در دو ژن کاندید با پتانسیل مقاومت در برابر آنفلوآنزا و سالمونلا در برخی از سویه‌های مرغ بومی و تجاری ایران

نوع مقاله: مقاله کامل

نویسندگان

1 دانشجوی دکتری ژنتیک و اصلاح نژاد دام، دانشگاه علوم کشاورزی و منابع طبیعی ساری، دانشکده علوم دامی و شیلات، گروه علوم دامی، ساری، ایران و عضو هیات علمی دانشگاه آزاداسلامی، واحدمراغه، گروه علوم دامی، مراغه، ایران

2 استاد دانشگاه علوم کشاورزی و منابع طبیعی ساری، دانشکده علوم دامی و شیلات، گروه علوم دامی، ساری، ایران

3 دانشیار دانشگاه علوم کشاورزی و منابع طبیعی ساری، دانشکده علوم دامی و شیلات، گروه علوم دامی، ساری، ایران

4 استادیار دانشگاه علوم کشاورزی و منابع طبیعی ساری، دانشکده علوم دامی و شیلات، گروه علوم دامی، ساری، ایران

چکیده

در این تحقیق چند شکلی‌های‌ آللی در ژن‌های کاندید Mx و SLC11A1 دخیل در سیستم ایمنی در برخی از سویه‌های مرغ بومی عمومی، آذربایجان غربی، مرندی، مازندرانی و نیز سویه‌های مرغ‌ تجاری گوشتی و تخم‌گذار با استفاده از تکنیک PCR-RFLP مورد بررسی قرار گرفت. در مجموع 300 قطعه مرغ انتخاب و برای شناسایی جهش در جایگاه‌های ژنی Mx و SLC11A1 به ترتیب از آنزیم‌های Hyp81 و SacI استفاده شد. در جایگاه ژنی Mx، برای آلل A، یک قطعه‌ی 299 جفت بازی و برای آلل G، دو قطعه‌ی 200 و 99 جفت بازی مشخص شد و در جایگاه ژنی SLC11A1، برای آلل T، یک قطعه‌ی 801 جفت بازی و برای آلل C، دو قطعه‌ی 722و 79 جفت بازی شناسایی شد. بین گروه‌های مختلف مرغ‌ بومی و تجاری ، در جایگاه‌های ژنی Mx و SLC11A1 بیشترین فراوانی آلل حساس به بیماری ( G و C) مربوط به گروه سویه‌های مرغ‌ بومی و گروه سویه‌ی تجاری گوشتی بود. در جایگاه ژنی Mx، شاخص اطلاعات شانون در گروه‌های مختلف مرغ از 1347/0 تا 6641/0 و در جایگاه ژنی SLC11A1 از 3669/0 تا 6769/0 متغیّر بود و شاخص تثبیت در جایگاه ژنی Mx برای گروه سویه‌های مرغ‌ بومی مثبت و در جایگاه SLC11A1 برای گروه‌های مختلف مرغ‌ منفی بود.نتایج این تحقیق بیانگر این است که می‌توان از این جایگاه‌های ژنی به عنوان مارکر برای اصلاح نژاد ژنتیکی جهت کاهش بیماری‌های مرغ‌های بومی و تجاری استفاده کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identification of mutation in tow candidate genes with resistance potential against avian influenza and salmonellosis in some Iranian indigenous and commercial chicken strains

نویسندگان [English]

  • J. Pish Jang Aghajeri 1
  • G. Rahimi Mianji 2
  • H. Hafezian 3
  • M. Gholizadeh 4
1 Student of Department of Animal Science, Sari Agricultural Sciences and Natural Resources University, Sari, Iran & Department of Animal Science, Islamic Azad University, Maragheh branch, Maragheh, Iran.
2 Professor of Department of Animal Science, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
3 Association of Department of Animal Science, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
4 Assistant of Department of Animal Science, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
چکیده [English]

In this study, allelic polymorphism in candidate genes of Mx and SLC11A1 involved in the immune system in some Iranian Common, West Azarbaijani, Marandi, Mazandarani indigenous and commercial chicken strains examined using PCR-RFLP technique. A total of 300 birds were selected and for detection of mutation in Mx and SLC11A1 genes the PCR products were digested by Hyp81 and SacI restriction enzymes, respectively. For the Mx gene, one fragment with length of 299 bp and two fragments with the length of 200 and 99 bp were identified for the A and G alleles respectively. One fragment with the length of 801 bp for T allele and two fragments with the length of 722 and 79 bp for C allele were identified in SLC11A1 gene. Between different groups of chickens, in the Mx and SLC11A1 genes, the most frequency of susceptible to disease alleles (G and C) were in the indigenous chicken strains and meat commercial chicken strain. In the Mx loci, Shannon's information index was in different groups of chicken from 0.1347 to 0.6641 and in the SLC11A1 loci was from 0.3669 to 0.6769. In the Mx loci, fixation index was positive for indigenous chickens group and in the SLC11A1 loci was negative for different groups of chickens. The results of this study indicate that these genes loci can be used as marker for genetic breeding to reduce the diseases of indigenous and commercial chicken strains.

کلیدواژه‌ها [English]

  • Mx and SLC11A1 genes
  • Indigenous chicken
  • PCR-RFLP
  • Polymorphism


1. Awomoyi, A. A. 2007. The human solute carrier family 11 member 1 protein (SLC11A1): linking infections, autoimmunity and cancer. FEMS Immunology and Medical Microbiology 49(3): 324-329.
2. Blackwell, J. M. 1996. Structure and function of the natural- resistance associated macrophage protein 1 (Nramp1), a candidate protein for infectious and autoimmune disease susceptibility. Molecular Medicine Today 2: 205-211.
3. Balkissoon, D., K. Staines, M. J. Cauley, J. Wood, J. Young, J. Kaufman and C. Butter. 2007. Low frequency of the Mx allele for viral resistance predates recent intensive selection in domestic chickens. Immunogenetics 59:687-691.
4. Davila, S. G., M. G. Gil, P. R. Talavan and J. L. Campo. 2009. Evaluation of diversity between different Spanish chicken breeds, a tester line, and a White Leghorn population based on microsatellite markers. Poultry Science 88: 2518-2525.
5. Forbes, J. R. and P. Gros. 2003. Iron, Manganese, and Cobalt transport by Nramp1 (SLC11A1) and Nramp2 (SLC11A2)expressed at the plasma membrane. Blood 102: 1884–1892.
6. Haller, O., G. Koechs and F. Weber. 2007. Interferon, Mx, and viral countermeasures, cytokine growth factor. Review Journal 18: 425-433.
7. Hu, J., N. Bumstead, D. Burke, F. A. Ponce de Leon, E. Skamene, P. Gros and D. Malo. 1995. Genetic and physical mapping of the natural disease resistance-associated macrophage protein 1 (Nramp1) in chicken. Mammalian Genome 6: 809-815.
8. Hu, J., N. Bumstead, P. Barrow, G. Sebastiani, L. Olien, K. Morgan and D. Malo. 1997. Resistance to salmonellosis in the chicken is linked to Nramp1 and TNC. Genome Research 7: 693-704.
9. Ko, J. H., H. K. Jin, A. Asano, A. T. akada, A. Ninomiya, H. Kida, H. okiyama, M. Ohara, T. suzuki, M. Nishibori, M. Mizutani and T. Watanabe. 2002. Polymorphisms and the differential antiviral activity of the chicken Mx gene. Genome Research 12: 595-601.
10. Lee, S. H. and S. M. Vidal. 2002. Functional diversity of Mx proteins: variations on a theme of host resistance to infection. Genome Research 12: 527-30.
11. Li, X. Y., L. J. Qu, J. F. Yao and N. Yang. 2006. Skewed allele of an Mx gene mutation with potential resistance to avian influenza virus in different chicken populations. Poultry Science 85: 1327-1329.
12. Liu, W, M. G. Kaiser and S. J. Lamont. 2003. Natural resistance-associated macrophage protein 1 gene polymorphisms and response to vaccine against or challenge with Salmonella enteritidisin young chicks. Poultry Science 82: 259-266.
13. Maghsoudi, S. M. and A. Pakdel. 2008. Review of effective genetical methods to induce disease resistance in farm animals. In: Proceeding of 1st National conference on livestock and poultry industry. Gorgan, Iran, pp. 1-6. (In farsi).
14. Malek, M. and S. J. Lamont. 2003. Association of iNOS, TRAIL, TGF-β2, TGF-β3, and IgL genes with response to Salmonella enteritidisin poultry. Genetics Selection Evolution 35: 99-111.
15. Malekshahdehi, S., H. Hafezian, G. Rahimi and Z. Ansari. 2014. Detection of allelic polymorphisms of Mx gene in native fowls and commercial broiler and laying strain chickens. Iranian Journal of Animal Science Research 6(1): 92-97. (In farsi).
16. Miller, S. A., D. D. Dykes and H. F. Polesky. 1988. A Simple Salting Out Procedure for Extracting DNA From Human Nucleated Cells. Nucleic Acids Research 16(3): 12-15.
17. Palaga, M., A. Muladno, C. Sumantri and S. Murtini. 2013. Association of Mx gene genotype with antiviral and production traits in tolaki chicken. International Journal of Poultry Science 12: 735-739.
18. Seung, H. L. and M. V. Silvia. 2002. Functional diversity of Mx proteins: Variations on a theme of host resistance to infection. Genome Research 12: 527-530.
19. Thomas, N. and S. Joseph. 2012. Role of SLC11A1gene in disease resistance. Biotechlology in Animal Husbandry 28 (1): 99-106.
20. Tohidi, R., I. Idris, J. M. panandam and M. H. Bejo. 2011. Analysis of genetic variation of inducible nitric oxide synthase and natural resistance-associated macrophage protein 1 loci in Malaysian native chickens. African Journal of Biotechnology 10(8): 1285-1289.
21. Vanhala, T., M. Tuikula-Haavisto, K. Elo, J. Vilkki and A. Maki-Tanila. 1998. Evaluation of genetic variability and genetic distances between eight chicken lines using microsatellite markers. Poultry Science 77: 783-790.
22. Xiangun, Y. E., Z. Ten, Y. Zhang and K. Li. 2010. Single nucleotide polymorphisms in the chicken Mx gene at position 2032 by Real-time allele PCR melting-curve analysis. Journal of Poultry Science 47: 133-138.
23. Ye, X., S. J. Avendano, C. M. Dekkers and S. J. Lamont. 2006. Association of twelve immune-related genes with performance of three broiler lines in two different hygiene environments. Poultry Science 85: 1555-1569.
24. Yeh, F., Y. Rongcal and T. Boyle. 2000. POPGENE 1.32: A free program for the analysis of genetic variation among and within populations using co-dominant and dominant markers. Department of Renewable Resources, University of Alberta, Alberta, Canada.
25. Zanetti, E., M. De Marchi, C. Dalvit and M. Cassandro. 2007. Genetic characteriation of local Italian breeds of chickens undergoing in situ conservation. Poultry Science 89: 420-427.