بررسی تهیه آنزیم های لیزوزیم و ناتوکیناز در سوبسترای کیتینی پوسته Litopenaeus vannamei و Portunus pelagicus

نوع مقاله: مقاله کامل

نویسندگان

1 کارشناس ارشد بیوتکنولوژی دریا، گروه زیست شناسی دریا، دانشکده علوم دریایی و اقیانوسی، خرمشهر، ایران

2 استادیار گروه زیست شناسی دریا، دانشکده علوم دریایی و اقیانوسی، دانشگاه علوم و فنون دریایی خرمشهر، خرمشهر، ایران

3 دانشیار گروه زیست شناسی دریا، دانشکده علوم دریایی و اقیانوسی، دانشگاه علوم و فنون دریایی خرمشهر، خرمشهر، ایران

چکیده

در این تحقیق، تولید آنزیم‌های لیزوزیم و ناتوکیناز توسط باکتری‌های انتخابی در محیط کشت حاوی پودر پوسته‌های کیتینی میگوی Litopenaeus vannamei و خرچنگ Portunus pelagicus ارزیابی شد. نمونه‌های میگو از بازار ماهی فروشان در خرمشهر جمع‌آوری شد. نمونه‌برداری خرچنگ نیز از نواحی بین جزر و مدی سواحل خوزستان در خلیج فارس انجام شد. جهت سنجش میزان فعالیت آنزیم لیزوزیم از روش‌های رنگ‌سنجی در سوبسترای اتیلن گلیکول کیتین و لیزوپلیت در سوبسترای M. luteus و جهت تایید تولید آنزیم ناتوکیناز از روش لیز شدن لخته خون استفاده گردید. نتایج نشان داد که میزان واحد آنزیمی لیزوزیم سویه P. aeroginosa در روش لیزوپلیت U/ml 47/6، در روش رنگ سنجی معادل U/ml 2/35 و میزان NAG آزاد شده حاصل از فعالیت آن، mg/ml 091/0 و میانگین فعالیت آنزیم ناتوکیناز خام تولیدی سویه B. subtilis، 4/37 درصد بود. بنابراین، علاوه بر حذف موفقیت‌آمیز پسماندهای کیتینی از محیط زیست و استحصال کیتین خالص می‌توان با استفاده از باکتری‌های انتخابی، آنزیم‌های لیزوزیم و ناتوکیناز را تولید نمود. آنزیم‌های مذکور، پس از بهینه‌سازی صنعتی، در پزشکی و داروسازی مورد استفاده قرار می‌گیرند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of the preparationof lysozyme and nattokinase enzymes in chitinous shells media of Litopenaeus vannamei and Portunus pelagicus

نویسندگان [English]

  • S. Hardani 1
  • B. Archangi 2
  • H. Zolgharnein 3
  • E. Zamani 2
1 Marine Biotechnology, Department of Marine Biology, Faculty of Marine Science and Oceanography, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran.
2 Associate Professor, Department of Marine Biology, Faculty of Marine Science and Oceanography, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran.
3 Professor, Department of Marine Biology, Faculty of Marine Science and Oceanography, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran.
چکیده [English]

In this research, production of lysozyme and nattokinase enzymes by selected bacteria in chitinous shells culture media of Litopenaeus vannamei and Portunus pelagicus were evaluated. Shrimp specimens were collected from fish market centers in Khorramshahr. Crab sampling was undertaken from intertidal areas of Khuzestan coasts, Persian Gulf. For lysozyme enzyme activity, colorimetric assay with ethylene glycol chitin and lysoplate method with M. luteus as substrate were applied. To evaluate nattokinase production, human blood clot lyses method was used. Results showed that unit of lysozyme activity for P. aeroginosa with lysoplate method was 6.47μg/ml, colorimetric method was 35.2 U/ml and NAG released by enzyme activity was 0.091 mg/ml, respectively. Average unit of nattokinase activity for B. subtilis was also %37.4. Therefore, in addition to successful removal of chitinous wastes from environment and extraction of pure chitin, it is possible to manufacture lysozyme and nattokinase enzymes with selected bacteria. These enzymes can be used in medical and pharmaceutical applications after industrial optimization.

کلیدواژه‌ها [English]

  • Chitinous waste substrate
  • lysozyme
  • Nattokinase
  • Litopenaeus vannamei
  • Portunus pelagicus


1- FAO. 2016. The State of World Fisheries and Aquaculture Contributing to food security and nutrition for all. Rome. Available online at: http://www.fao.org/3/a-i5555e.pdf.
2- FAO. 2007. La situation mondiale des peˆches et de l’aquaculture 2006. De´partement des peˆches et de l’aquaculture; Rome. Available online at: http://www.fao.org/3/a-a0699f.pdf
3- Gaiker and C. Tecnológico. 2004. Handbook for the prevention and minimization of waste and valorization of by-products in European agro-food industries. Agro-food waste minimization and reduction network (AWARENET) 1–7.
4- Ben-Rebah, F. and Miled, N. 2013. Fish processing wastes for microbial enzyme production: a review.3 Biotechnology 3(4): 255–265.
5- Dufresne, A. 2010. Natural rubber green nanocomposites, In: Thomas, S.; Stephen, R. (ed.), Rubber Nanocomposites: Preparation, Properties and Applications. Wiley, Singapore (Asia) 113–146 pp.
6- Khor, E. 2014. Chitin: Fulfilling a Biomaterials Promise. 1st Edition. Burlington, Elsevier Science 154 pp.
7- Ghavampour, A. 2009. By-product in fish processing, applications and economic value. Department of Fisheries Khuzestan Province No 32. 1pp. (In Farsi).
8- Jayakumar, R., M. Prabaharan, S. V. Nair. and H. Tamura. 2010. Novel chitin and chitosan nanofibers in biomedical applications. Biotechnology Advance 28: 142–150.
9- Archer, M., R. Watson and J. W. 2001. Fish waste production in the United Kingdom -The quantities produced and opportunities for better utilization. The sea fish industry authority sea fish technology. 1-57.
10- Zarei, M. 2008. Production of chitinase as biological products from microorganisms in 116 wastewater shrimp farms. PhD thesis, Khorramshahr University of Marine Science and Technology. Khorramshahr, Iran. (In Farsi).
11- Salahi nezhad, T., Z. Heshmatipour and M. Hashemi caruei. 2014. Isolation, characterization and assessment the antifungal potential of chitin-degrading bacteria isolation from rhizosphere soil. Microbials world Journal of Islamic Azad University of Jahrom 7(1): 66-74. (In Farsi).
12- Mousavi, S. M. A., A. Dehnad, Sh. Kamali and M. Pour soultan. 2011. Evaluation of antifungal effect and activity of chitinase19 from one strain of Iranian native Streptomyces griseus. Microbial biotechnology of Islamic Azad University Journal 3 (10): 1-6. (In Farsi).
13- Naidu, A.S. 2000. Natural Food Antimicrobial Systems. CRC Press, Culinary and Hospitality Industry Publications Services, Washington, 1– 4 pp.
14- Lari, M. A., R. Ramazani and S. Amiri. 2013. Chemical modification of lysozyme with dextran by using Maillard reaction and evaluating the antimicrobial properties of the modified enzyme. Journal of food science and nutrition 11(1): 5-15. (In Farsi).
15- Gill, A.O and R.A. Holley. 2003. Interactive inhibition of meat spoilage and pathogenic bacteria by lysozyme, nisin and EDTA in the presence of nitrite and sodium chloride at 24C. International Journal of Food Microbiology 80: 251-259.
16- Wang, S. L. and W. T. Chang. 1997. Purification and characteriazation of two bifunctional chitinases/lysozymes extracellularly produced by Pseudomonas aeruginosa K-187 in a shrimp and crab shell powder medium. Applied and Environmental Microbiology 63(2): 380–386.
17- Wang, S.L., I. L. Shih, T.W. Liang. and C. H. Wang. 2002. Purification and characterization of two antifungal chitinases extracellularly produced by Bacillus amyloliquefaciens V656 in a shrimp and crab shell powder medium. Journal of Agricultural and Food Chemistry 50: 2241–2248.
18- Rasagnya, P. S. and M. Vangalapati. 2013. Studies on optimization of Process Parameters for nattokinase production by Bacillus subtillis NCIM 2724 and purification by liquid-liquid extraction. International Journal of Innovatine Research in Science, Engineering and Technology 2(9): 4516-4521.
19- Jeong, Y. K., J. U. Park, H. Baek, S. H. Park, I. S. Kong, D.W Kim and W. H. Joo. 2001. Purification and biochemical characterization of a fibrinolytic enzyme from Bacillus subtilis BK-17. World Journal of Microbiology and Biotechnology 17: 89–92.
20- Wang, S. L., S. J. Chen, T.W. Liang. and Y. D. Lin. 2009. Anovel nattokinase produced by Pseudomonas sp. TKU015 using shrimp shells as substrate. Process Biochemistry 44: 70–76.
21- Agrebi, R., A. Haddar, N. Hmidet, K. Jellouli, L. Manni and M. Nasri. 2009. BSF1 fibrinolytic enzyme from a marine bacterium Bacillus subtilis A26: Purification, biochemical and molecular characterization. Process Biochem 44(11): 1252-1259.
22- Wang, S. L. and P. Y. Yeh. 2008. Purification and characterization of a chitosanase from a nattokinase producing strain Bacillus subtilis TKU007 using shrimp shell powder as a medium. Process Biochemistry 43: 132–138.
23- Pourmorad, F., P. Ebrahimi, M.A. Ebrahimzadeh, S. Honari and M. Orangian. 2005. Degree of deacetylation of chitosan produced from shrimp shells. Journal of Mazandaran university of medical sciences 15(50): 27-34. (In Farsi).
24- Yamada, H. and T. Imoto. 1981. A convenient synthesis of glycolchitin, a substrate of lysozyme. Carbohydrure Research 92: 160-162.
25- Imoto, T. and K. Yagishita. 1971. A simple activity measurement of lysozyme. Agricultural and Biological Chemistry 35(7): 1154–1156.
26- Osserman, E. F. and D. P. Lawlor. 1966. Serum and urinary lysozyme (muramidase) in monocytic and monomyelocytic leukemia. The journal of experimental medicine 1.124(5): 921-52.
27- Chandrasekaran, S. D., M. Vaithilingam, R. Shanker, S. Kumar, S. Thiyur, V. Babu, J. N. Selvakumal and S. Prakash. 2015. Exploring the in vitro thrombolytic activity of nattokinase from a new strain Pseudomonas aeruginosa CMSS. Jondishapur Journal of Microbiology 8(10): e 23567.
28- Dubey, R., J. Kumar, D. Agrawala, T. Char and P. Pusp. 2011. Isolation, production, purification, assay and characterization of fibrinolytic enzymes (nattokinase, streptokinase and urokinase) from bacterial sources. Africa Journal Biotechnology 10: 1408-20.
29- Helal, R and M. F. Melzig. 2008. Determination of lysozyme activity by a fluorescence technique in comparison with the classical turbidity assay. Pharmazi 63:415–419.
30- Sumi, H., S. Ikeda and T. Ohsugi. 2009. Increasing the Production of Nattokinase and Vitamin K2 in Natto with Dipicolinic Acid. The Open Food Science Journal 3: 10-14.
31- Aradhye, P .K. and M.D. Chavan. 2015. Production, characterization and In-vitro study of fibrinolytic enzyme from locally isolated Micrococcus luteus B-07. World Journal of Pharmacy and Pharmaceutical sciences 4(8): 775-783.