پیش‌بینی آثارSNPهای غیرمترادف ژن استروژن رسپتور بر ساختار و عملکرد پروتئین آن در گاومیش‌ خوزستانی

نوع مقاله: مقاله کامل

نویسندگان

1 دانشجوی کارشناسی ارشد ژنتیک و اصلاح نژاد، دانشگاه کشاورزی و منابع طبیعی رامین خوزستان

2 دانشیار دانشگاه کشاورزی و منابع طبیعی رامین خوزستان،گروه علوم دامی

3 استادیار دانشگاه کشاورزی و منابع طبیعی رامین خوزستان، گروه علوم دامی

4 استادیار دانشگاه شهید چمران اهواز، گروه ژنتیک

چکیده

پیشرفت‌های اخیر در توالی‌یابی DNA و الگوریتم‌های محاسباتی منجر به تشخیص SNPهایی با ارزش بالاتر شده است. در این تحقیق از چندین الگوریتم محاسباتی برای بیان تاثیر SNP‌های ژن استروژن رسپتور آلفا (ESRα) بر عملکرد پروتئین در ژنوم گاومیش استفاده شد.در این بررسی از تراشه Affymetrix90KSNP در112 گاومیش خوزستانی استفاده شده است. دو SNP (Argenin43Histedin,Thronin15Alanin) برای ژن ESRα یافت شد. آنالیز اینSNPها با استفاده از سرورهای Sift ،Panther و Provean انجام گردید. Sift با محاسبه ضریب صفر اثر SNPها را مخرب و موثر بر عملکرد پروتئین پیش‌بینی کرد و Panther برای دو SNP اثرات مخرب و موثر بر عملکرد پیش‌بینی کرد. الگوریتم Provean با محاسبه ضریب 08/0- برای SNP-Thronin15 Alanin و با محاسبه امتیاز 13/0- برای SNP-Argenin43Histedin اثرات این SNP را طبیعی پیش‌بینی کرد. برای بررسی بیشتر اثرات این SNPها بر پایداری پروتئین و استحکام ازالگوریتم I-mutant استفاده شد. الگوریتم I-mutant تاثیر SNP بر پایداری پروتئین را با کمک رگرسیون و براساس تغییر در انرژی آزاد (49/0-=DDG) پیش‌بینی کرد. SNP-Thronin15Alanin در دمای25 درجه و 7=pH ثبات پروتئین را کاهش می‌دهد. SNP-Argenin43Histedin با محاسبه امتیاز (53/0-=DDG) ثبات پروتئین را کاهش می‌دهد. مدل‌سازی پروتئین ESRα با سرور I-taser انجام شد. اعتبارسنجی مدل‌ها به‌کمک نقشه‌های راماچاندران و سرور Pro-SAحاکی از انحراف پروتئین جهش‌یافته در مقایسه با مدل طبیعی است. مقایسه نتایج داکینگ در دو مدل، نشاند‌هنده‌ی تغییر غیرمستقیم آمینواسیدهای درگیر در اینترکشن در مدل جهش‌یافته است.SNPها در اکتیوسایت نمی‌باشند ولی با تغییر ساختار پروتئین، به طور غیرمستقیم بر آمینواسیدهای درگیر در اینترکشن تاثیرگذار بوده‌اند و باعث کاهش میل اتصالی لیگاند در مدل جهش‌یافته شده‌اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Prediction of nonsynonymouse SNPs effects in Esterogene Receptor (ESR) gene on Protein Structure and Performance in Khuzestani Buffaloes

نویسندگان [English]

  • A. Askari Rad 1
  • J. Fayazi 2
  • M. Nazari 3
  • M.R. Hajari 4
1 Student of Animal Breeding.
2 Associate Professor, Department of Animal Science, Ramin University of Agriculture and Natural Resources University of Khuzestan.
3 Assistant Professor, Department of Animal Science, Ramin Agriculture and Natural Resources University of Khuzestan.
4 Assistant Professor, Department of Genetic,ShahidChamran University of Ahvaz.
چکیده [English]

Recent developments in DNA sequencing and computational algorithms have leading to the discovery of higher value SNPs. In this research, several computational algorithms were used to express the effect of ESRα gene SNPs on protein function in buffalo genome. In this study genomic information of 112 Khuzestani buffaloes that revealed by Affymetrix-90K-SNP-Chip were used. We found two SNPs for ESRα gene. The analysis of these SNPs was performed using Sift, Provean servers. Sift by calculating a zero coefficient, predict that SNPs effects were destructive and effective on protein function. Provean algorithm predict a natural effect by calculating a coefficient of -0.08 for Thr15Ala-SNP and a score of -0.13 for Argenin 43 Histedin-SNP. The SNPs were examined using I-mutant for further investigation of SNPs effects on Protein stability. I-mutant algorithm predict the effect of SNP on protein stability by regression and based on the change in free energy (DDG=-0.49). The result suggestedthat Thronin15Alanin-SNP at 25 °C and pH=7 will reduce the protein stability and Argenin 43 Histedin-SNP, because of its score (DDG=-0.53), has same effect on protein stability. ESRα protein modeling was performed by I-taser server. Validation of the models by Ramachandran plot and Pro-SA server, indicating a deviation in the mutant protein compared to the natural model. Molecular docking in both natural and mutant models indicates no direct changes in the amino acids involved in the interaction. However by side effect and indirectly there is a decrease in ligand binding affinity for the receptor in the mutated model compare to the natural model.

کلیدواژه‌ها [English]

  • ESRα
  • SNP
  • Docking
  • Homology modeling

1.Bhattacharya, R., Rose, P.W., Burley, S. K. and Prlic, A. 2016. Impact of genetic variation on three dimensional structure and function of proteins. PLOS ONE. 12(3): e0171355
2. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E. 2000. The Protein Data Bank. Nucleic Acids Res. 28: 235-242
3. Bg, H. 1990.Spontaneous point mutations that occur more often when advantageous than when neutral. Genetics. 126:5-16
4. Bava, K.A., Gromiha, M.M., Uedaira, H., Kitajima, and K. Sarai. A. 2004. ProTherm, version 4.0: thermodynamic database for proteins and mutants. Nucleic Acids Res. 32:D120-D121.
5. Brohee, S., and VanHelden, G. 2006. Evaluation of clustering algorithms for protein-protein interaction networks. Bmc Bioinformatic. 7:488-498
6. Connor, E.E., Wood, D.L., Sonestigard, T.S., Da Mota, A.F., Bennet, G.L., Williams, J.L. and Capuco, A.v. 2005. Chromosomal mapping and quantitative analysis of estrogen-related receptor alpha-1, estrogen receptors alpha and beta and progesterone receptor in the bovine mammary gland. Journal of Endocrinology. 185:593-603
7. Choi, Y., Sims, G.E., Murphy, S., Miller, J.R., and Chan, A.P. 2012. Predicting the Functional Effect of Amino Acid Substitutions and Indels. PLoS ONE. 7: e466-488
8. Choi, Y., and Chan, A.P. 2015. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31: 2745-2747.
9. Capriotti, E., Fariselli, P. and Casadio, R. 2005. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Research. 33: W306-310
10. Curtis, A.E., Smith, T.A., Ziganshin, B.A., and Elefteriades, J.A. 2016. The Mystery of the Z-Score. 4:124-130
11. Franceschini, A., Szklarczyk, D., Frankild, S., Kuhn, M., Simonovic, M., Roth, A., Lin, J., Minguez, P., Bork, P., Mering, C., and Jensen, L.J. 2013. String: Protein-Protein interaction Networks with increased coverage and integration.41:808-815
12. George Priya Doss, C., Nagasundaram,M., Chakraborty,C., Chen, L., and Zhu, H. 2013. Extrapolating the effect of deleterious nsSNPs in the binding adaptability of flavopiridol with CDK7 protein: a molecular dynamics approach. Hum Genom. 7: 10-20
13.Johnson, M.M., Houck, J., and Chen, C. 2005. Environmental aspects selection for EEE using ANP method Screening for Deleterious Nonsynonymous Single-nucleotide Polymorphisms in Genes Involved in Steroid Hormone. Metabolism and Response. 14:1326-1329
14. Kabsch, W., and Sander, C. 1983. Dictionary of protein secondary structure: pattern of hydrogen-bonded and geometrical features. Biopolymers. 22: 2577-2637
15. Kumar, P., Henikoff, S., and Ng, P.C. 2009. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 4:1073-1081
16.Muthukumar, S., Rajkumar, R., Karthikeyan, K., Liao, C.C., Singh, D., Akbarsha, M.A. and Archunan, G. 2014. Buffalo cervico-vaginal fluid proteomics with special reference to estrous cycle: heat shock protein (HSP)-70 appears to be an estrus indicator. Biol Reprod. 8:90-97
17.Peng, Y., Zhaolong, L., and John, M. 2005. Loss of protein structure stability as a major causative factor in monogenic disease. J. Mol. Biol. 353: 459–473.
18. Perera, B.M. 2011. Reproductive cycles of Buffalo. Animal Reproduction Sci.124:194-199
19. Rasel, K.D., Chakrapani,V., Patra, S.K. , Jena, S., Mohapatra, S.D., Nayak, S., Sundaray, J.K., Jayasankar, P., and Barman, H.K. 2015. Identifcation and prediction of the consequences of nonsynonymous SNPs in glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene of zebrafshDaniorerio. Turkish Journal of Biology. 40:43-54
20. Suthar, V. S., and Dhami, A. J. 2010. Estrus Detection Methods in Buffalo. Veterinary World. 3: 94-96
21.Imran, S., Javed, M., Yaqub, T., Iqbal, M., Nadeem, A., Mukhtar, and N. Maccee, F. 2014. Genetic Basis of Estrous in Bovine: A Review. International Journal Of Advanced Research. 2:962-966
22. Zhang,Y.2008. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 9: 40-48
23. Thomas, P.D., Campbell, M.J., Kejariwal, A., Karlak, B., Daverman, R., and Diemer, K. 2003. PANTHER: A Library of Protein Families and Subfamilies Indexed by Function. Genom Res. 13:2129-2141.